Imaging Graphene Moiré Superlattices via Scanning Kelvin Probe Microscopy

نویسندگان

چکیده

Moiré superlattices in van der Waals heterostructures are gaining increasing attention because they offer new opportunities to tailor and explore unique electronic phenomena. Using a combination of lateral piezoresponse force microscopy (LPFM) scanning Kelvin probe (SKPM), we directly correlate ABAB ABCA stacked graphene with local surface potential. We find that the potential domains is ?15 mV higher (smaller work function) than domains. First-principles calculations show different functions between arise from stacking-dependent structure. Moreover, while moiré superlattice visualized by LPFM can change time, imaging distribution via SKPM appears more stable, enabling mapping without tip–sample contact-induced effects. Our results provide means visualize domain stacking along its impact on properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy

The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM i...

متن کامل

Scanning hall probe microscopy technique for investigation of magnetic properties

Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor.  SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...

متن کامل

Scanning hall probe microscopy technique for investigation of magnetic properties

Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor.  SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...

متن کامل

Multiple hot-carrier collection in photo-excited graphene Moiré superlattices

In conventional light-harvesting devices, the absorption of a single photon only excites one electron, which sets the standard limit of power-conversion efficiency, such as the Shockley-Queisser limit. In principle, generating and harnessing multiple carriers per absorbed photon can improve efficiency and possibly overcome this limit. We report the observation of multiple hot-carrier collection...

متن کامل

Universal classification of twisted, strained and sheared graphene moiré superlattices

Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer graphene's electronic properties. Yet, the exact crystallographic structure on which their band structure depends remains highly debated. In this scanning tunneling microscopy and density functional theory study, we have analysed graphene samples grown on multilayer graphene prepared onto SiC an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nano Letters

سال: 2021

ISSN: ['1530-6992', '1530-6984']

DOI: https://doi.org/10.1021/acs.nanolett.1c00609